
100万通りの方法論について
1. はじめに
AI の計算能力と生成能力を活用すれば、人間が途中で思考を止めてしまう領域まで
探索を拡張し、網羅的に解決策を提示できる。本プロジェクトが掲げる 「100万通
りの方法論」 は、その規模によって「必ずヒントが見つかる」ことを保証するシン
ボルである。100 万という数字は誇張ではなく、後述する階層設計に基づき、実際
に生成可能な通り数である。

2. 方法論の基本フレーム
単位定義 : 1 つの「方法論」は、 目的 → 障害 10 件 → 解決 10 件 の ペア で構成される。

再帰構造 : 各解決策は次階層で「新たな目的 10 件」となり、それぞれに対して
10 件の障害と解決策を再度生成する。

思考モデル :

これがあるからできない → それをなくせばできる

これがないからできない → それを作ればできる

こうじゃないからできない → こうすればいい

この三段論法を繰り返し適用し、どこまでも深掘りを行う。

3. 階層設計とスケール
階層 内容 組み合わせ数

1 目的 → 障害 10 件 → 解決 10 件 10 × 10 = 100 通り

2 各解決策 → 障害 10 件 → 解決 10 件 100 × 100 = 10,000 通り

3 … …

6 … 1,000,000 通り

計算式 : 10 (障害) × 10 (解決) を 6 階層繰り返すことで 10^6 = 1,000,000 通りを
達成する。

4. 対象領域のフォーカス

100万通りの方法論について 1

当面のテーマは 「すべての人が幸せになるには」 に限定する。普遍性が高く、個別
領域（健康・お金・人間関係等）を包含できるため、初期検証に最適である。

5. 画像で捉える 100 万通りの方法論
以下の 2 枚の図版で、本プロジェクトの全体像と具体例を対比的に示す。

添付画像_1-全体像を俯瞰するマクロビュー.png

目的を起点に、右方向へ階層が増えるごとにボックスが並ぶ。

各ボックスには「障害 10 件 → 解決 10 件」のセットが内包され、階層が進むに
つれ指数的にノード総数が増大する様子を視覚化。

縦に並ぶ細線は 10 本ずつの障害・解決ラインを表し、横方向の連結が階層間の
再帰関係を示す。

図全体で 10^6 = 1,000,000 通りに到達するプロセスをひと目で把握できる。

添付画像_2-具体例を抜粋したミクロビュー.jpg

100万通りの方法論について 2

「目的：すべての人が幸せになる」の右側に第一階層の障害 10 件を配置。

そのうち 1 障害を展開し、対応する解決策 10 件を詳細表示。

更に一例として次階層（障害 → 解決）を展開し、階層が深まるにつれて方法論
が多様になることがわかる。

ノードごとに ID（例：0-0-0-0-1）を付与し、追跡・参照しやすい設計。

図版の使い分け

用途 適切な図

概念説明・ピッチ資料 図1（全体像）

ワークショップ・ケーススタディ 図2（具体例抜粋）

6. データ出力と管理

100万通りの方法論について 3

フェーズ プラットフォーム 理由・課題

現行 Google スプレッドシート 手軽だが行数上限 (~100 万セル) がネック

移行検討 CSV ファイル 汎用性が高く、バッチ処理に適合

将来 Notion データベース 容量制限が事実上なし、API 連携が容易

7. 品質保証と免責
AI 生成の限界 : 出力は統計的推定に基づくため、必ずしも正確・最新ではな
い。

利用者責任 : 本方法論の使用・実践は利用者の判断と責任で行うものとし、当方
は損害の一切を負わない。

改善フィードバック : 誤り・不備の指摘は随時受け付け、次回生成ロジックに反
映する予定。

8. 想定活用シーン & 今後の展望
「100万通りの方法論」は今後、生成ロジックそのものを改良し、社会課題の網羅と
解決策探索の最大化を目指す。

社会課題とは本質的に、「すべての人が幸せになる」ことを阻む障害である。

だからこそ、目的を起点に障害を逆算して構造化すれば、当事者が発信する「困っ

ていること」も含め、社会課題の全体を取りこぼしにくい形で取り扱える。

抜けが見つかった領域は観点・分類・生成ルールを更新し続け、社会課題と解決策

の両方をより広くカバーする体系へ進化させていく。

カテゴリ 活用例

実験素材 AI の創造性検証、生成アルゴリズム比較実験

PR 生成 AI の可能性を示すデモ / 展示コンテンツ

拡張 テーマ拡大（例：環境、教育、医療） / 階層追加による 10^n 通りの生成

9. 参考フローチャート
下記は、階層進行とタスク完了判定を含む抽象フローである。

添付画像_3-階層進行とタスク完了判定を含む抽象フロー.png

100万通りの方法論について 4

flowchart LR
 Start((Start)) --> Init["階層カウンタ = 1"]
 Init --> Purpose["目的を設定"]
 Purpose --> Generate["未処理ノードから
障害10件 & 解決10件を生成"]
 Generate --> CheckTasks{同じ階層に
未処理ノードは残っている?}
 CheckTasks -- はい --> Generate
 CheckTasks -- いいえ --> Inc["階層カウンタ = 階層カウンタ + 1"]
 Inc --> CheckLevel{階層カウンタ == 7?}
 CheckLevel -- いいえ --> Generate
 CheckLevel -- はい --> End((100万通りの方法論完成))

100万通りの方法論について 5

